

BBL IN ORAL SURGERY: A NEW ERA OF FAST & EFFECTIVE HEALING

Prof. Dr. Maher Atari

MD, DDS, MSR, PhD

OUR BOARD & RESEARCH TEAM

Prof Maher Atari MD, DMD, PhD CEO and Chief Scientific Officer

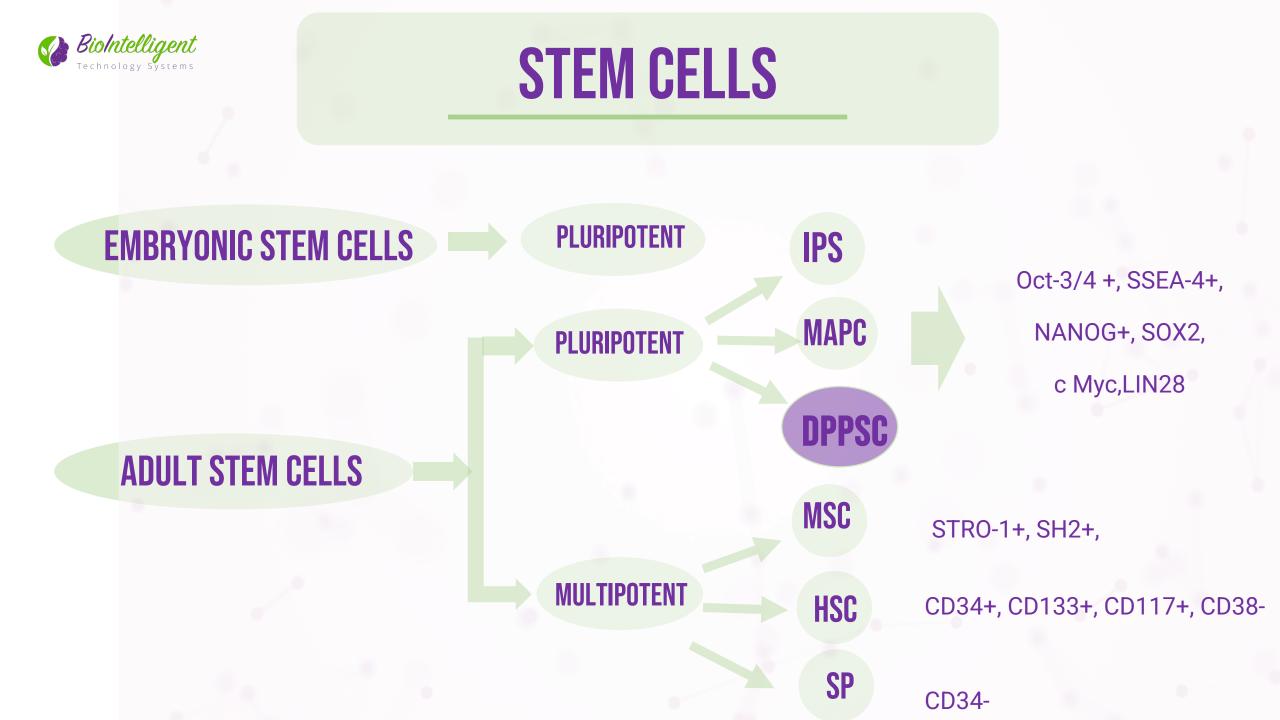
Josep Maria Piqueras MBA

Board of Directors

Dr. Carles Martí Pagès MD, PhD

Scientific Board

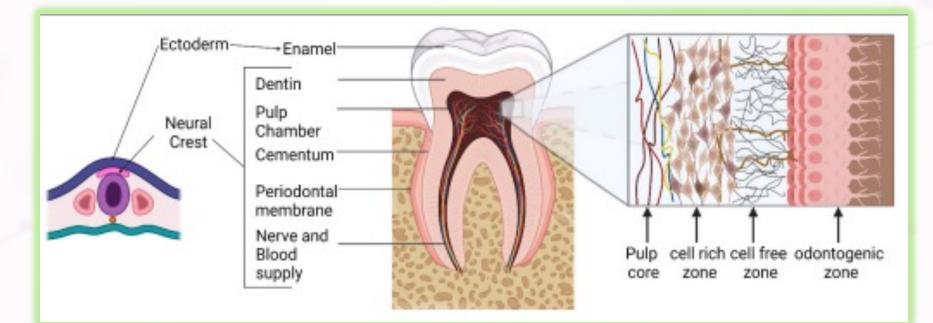
Dr. Javier Mareque Bueno, MD, DDS, MBA,

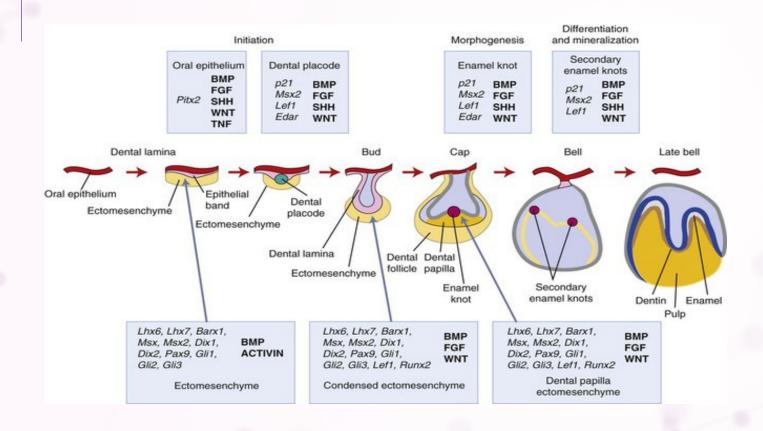

> PhD Scientific Board

Dr. Miguel Barajas PhD

Scientific Board

Dr. Eduard Ferrés Padró MD, DMD, PhD


Scientific Board


STEM CELLS

Dental pulp of the third molar: a new source of pluripotent-like stem cells

DPPSC ISOLATION

Research Article

Dental pulp of the third molar: a new source of pluripotent-like stem cells

3343

Maher Atari^{1,2}, Carlos Gil-Recio¹, Marc Fabregat¹, Dani García-Fernández¹, Miguel Barajas³, Miguel A. Carrasco⁴, Han-Sung Jung⁵, F. Hernández Alfaro², Nuria Casals⁸, Felipe Prosper³, Eduard Ferrés-Padró² and Luis Giner^{1,2,*}

Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, Barcelona 08009, Spain ²Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona 8017, Spain Area of Haematology, University of Navarra, Pamplona 31008, Spain ⁴Area of Pathology Universitat Internacional de Catalunya, Barcelona 08195, Spain ⁵Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, College of Dentistry, Yonsei University, Seoul 120-749, South Korea Basic Sciences Department and CIBER Physiopathology of the Obesity and Nutrition (CIBEROBN), Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona 08195, Spain Author for correspondence (joiner@csc.uic.es, drmaher1972@csc.uic.es)

Accepted 13 February 2012 Journal of Cell Science 125, 3343-3356 © 2012. Published by The Company of Biologists Ltd dai: 10.1242/jcs.096537

Summarv

Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4⁺, OCT3/4⁺, NANOG⁺, SOX2⁺, LIN28⁺, CD13⁺, CD15⁺, CD34⁻, CD45⁻, CD90⁺, CD29⁺, CD73⁺, STR01⁺ and CD146⁻, and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.

Key words: Dental pulp, DPPSC, Pluripotency, Teratoma formation, Embryonic markers, CGH technique

https://pubmed.ncbi.nlm.nih.gov/34712658/

BIOINTELLEGIENT PUBLICATIONS

Article

Histologic and Histomorphometric Evaluation of a New Bioactive Liquid BBL on Implant Surface: A Preclinical Study in Foxhound Dogs

Eduard Ferrés-Amat^{1,†}, Ashraf Al Madhoun^{2,†}, Elvira Ferrés-Amat^{1,3}, Saddam Al Demour⁴, Mera A. Ababneh⁵, Eduard Ferrés-Padró^{1,6}, Carles Marti^{6,7}, Neus Carrio³, Miguel Barajas^{6,8} and Maher Atari^{6,9,*}

MDPI

MDPI

Brief Report

The Effect of Commercially Available Endodontic Cements and Biomaterials on Osteogenic Differentiation of Dental Pulp Pluripotent-Like Stem Cells

Atari Maher ^{1,*}, Raquel Núñez-Toldrà ¹, Neus Carrio ¹, Eduard Ferres-Padro ², Hamad Ali ³, Sheyla Montori ¹ and Ashraf Al Madhoun ^{4,*}

Dental pulp of the third molar: a new source of pluripotent-like stem cells

Maher Atari^{1,2}, Carlos Gil-Recio¹, Marc Fabregat¹, Dani García-Fernández¹, Miguel Barajas³, Miguel A. Carrasco⁴, Han-Sung Jung⁵, F. Hernández Alfaro², Nuria Casals⁶, Felipe Prosper³, Eduard Ferrés-Padró² and Luis Giner^{1,2,*}

Acta Biomaterialia Volume 53, 15 April 2017, Pages 152-164

Full length article

Improvement of osteogenesis in dental pulp pluripotent-like stem cells by oligopeptide-modified poly(β-amino ester)s

Raquel Núñez-Toldrà ^{a 1}, Pere Dosta ^{b 1}, Sheyla Montori ^a, Víctor Ramos ^b ♀ ⊠, Maher Atari.^a ♀ ⊠, Salvador Borrós ^{b c}

Research Article

Chemically Defined Conditions Mediate an Efficient Induction of Dental Pulp Pluripotent-Like Stem Cells into Hepatocyte-Like Cells

Carlos Gil-Recio,¹ Sheyla Montori,¹ Saddam Al Demour,² Mera A. Ababneh,³ Eduard Ferrés-Padró,⁴ Carles Marti,⁵ Elvira Ferrés-Amat,⁶ Miguel Barajas,⁷ Ashraf Al Madhoun⁽⁶⁾,⁸ and Maher Atari⁽⁶⁾,^{1,9}

Martinez-Sarrà et al. Stem Cell Research & Therapy (2017) 8:175 DOI 10.1186/s13287-017-0621-3

Stem Cell Research & Therapy

RESEARCH

Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration

Ester Martínez-Sarrà^{1,2}, Sheyla Montori¹, Carlos Gil-Recio¹, Raquel Núñez-Toldrà¹, Domiziana Costamagna², Alessio Rotini^{2,3,4}, Maher Atari^{1†}, Aernout Luttun^{S†} and Maurilio Sampaolesi^{2,6*†}

DPPS CELLULAR MORPHOLOGY CHARACTERISATION

Research Article

3343

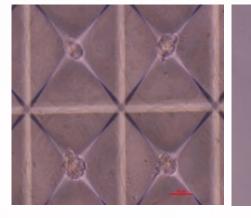
Dental pulp of the third molar: a new source of pluripotent-like stem cells

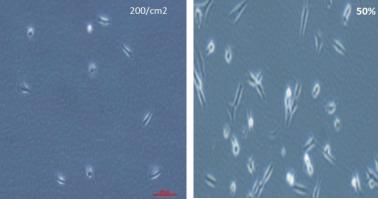
Maher Atari^{1,2}, Carlos Gil-Recio¹, Marc Fabregat¹, Dani García-Fernández¹, Miguel Barajas³, Miguel A. Carrasco⁴, Han-Sung Jung⁵, F. Hernández Alfaro², Nuria Casals⁶, Felipe Prosper³, Eduard Ferrés-Padró² and Luis Giner^{1,2,*}

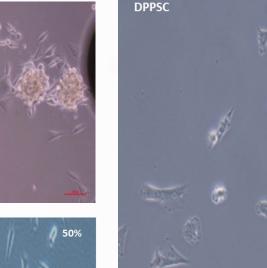
¹Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, Barcelona 08009, Spain ³Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona 8017, Spain ³Area of Hatology, University of Navarra, Pampiona 31008, Spain ⁴Area of Pathology Universitat Internacional de Catalunya, Barcelona 08195, Spain

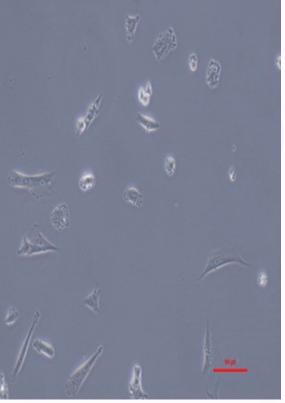
⁵Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, College of Dentistry, Yonsei University, Secul 120-749, South Korea

⁶Basic Sciences Department and CIBER Physiopathology of the Obesity and Nutrition (CIBEROBN), Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona 08195, Spain

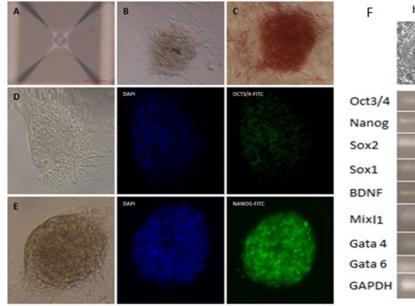

*Author for correspondence (iginer@csc.uic.es, drmaher1972@csc.uic.es)

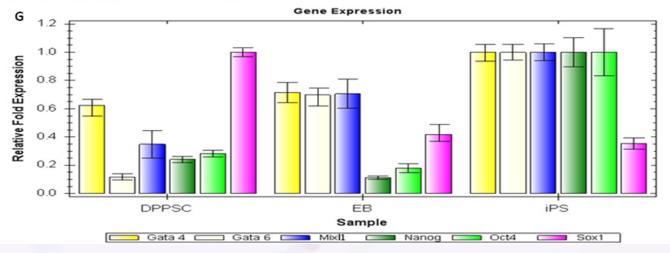

Accepted 13 February 2012 Journal of Cell Science 125, 3343–3356 © 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.096537


Summary


Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4⁺, OCT3/4⁺, NANOG⁺, SOX2⁺, LIN28⁺, CD13⁺, CD13⁺, CD34⁻, CD45⁺, CD90⁺, CD29⁺, CD73⁺, STR01⁺ and CD146⁻, and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of *GATA4*, *GATA6*, *MIXL1*, *NANOG*, *OCT3/4*, *SOX1* and *SOX2* to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.

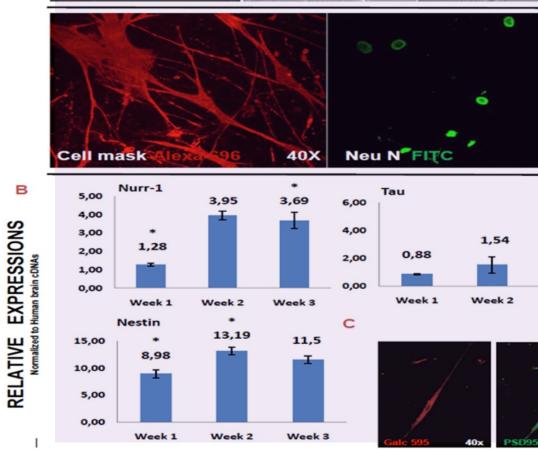
Key words: Dental pulp, DPPSC, Pluripotency, Teratoma formation, Embryonic markers, CGH technique





COMPARISON OF PROFILES WITH ANOTHER STEM CELLS

F	h-IPS	DPPSC-EB	DPMSC	DPPSC
				1.1
			21/11/2	
Oct3/4		-		-
Nanog	-			
Sox2				-
Sox1	Concession in the	-		-
BDNF		- 1 1 - 5 P		
Mix11	-	-		-
Gata 4				-
Gata 6	-	-		-
GAPDH	-			-



Α

 \mathbf{N}

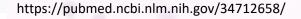
DPPSC ECTODERM DIFFERENTIATION

W 2

40)

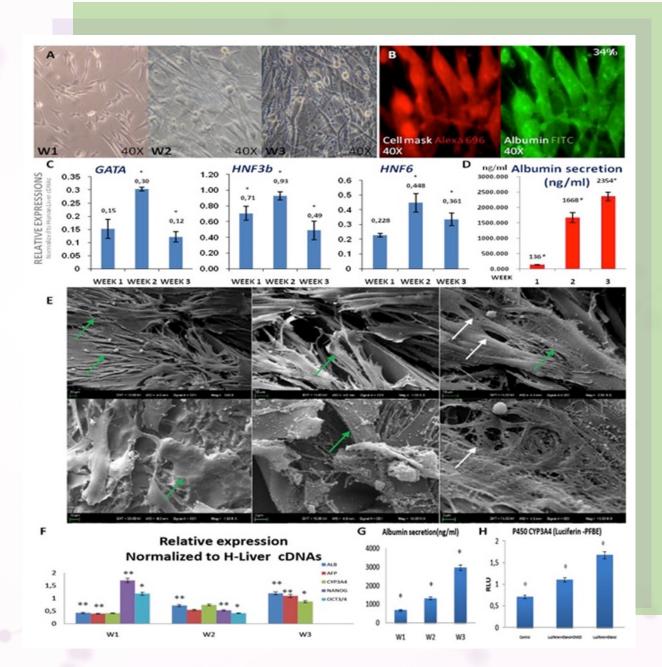
W 3

40X

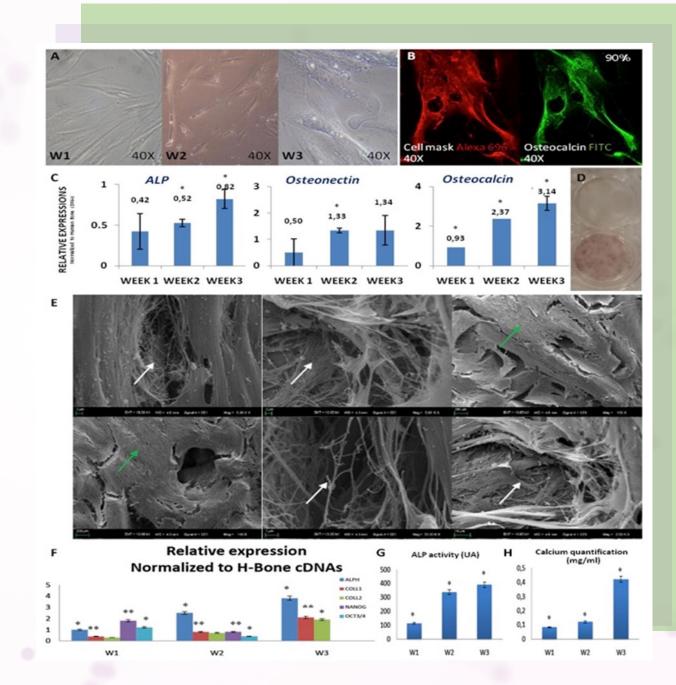

.

40X

3,75

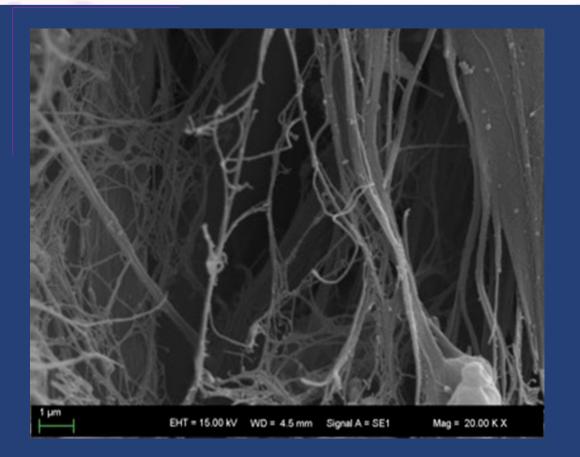

Week 3

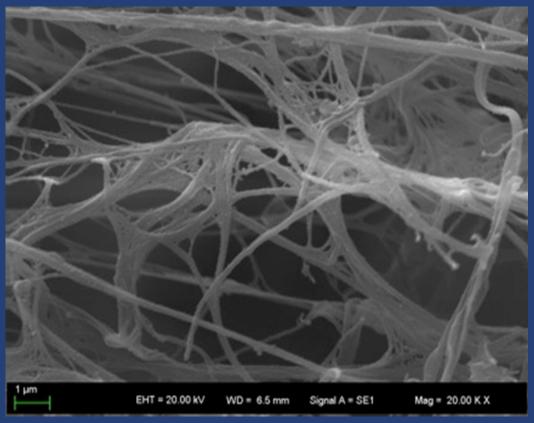
40X


DPPSC ENDODERM DIFFERENTIATION

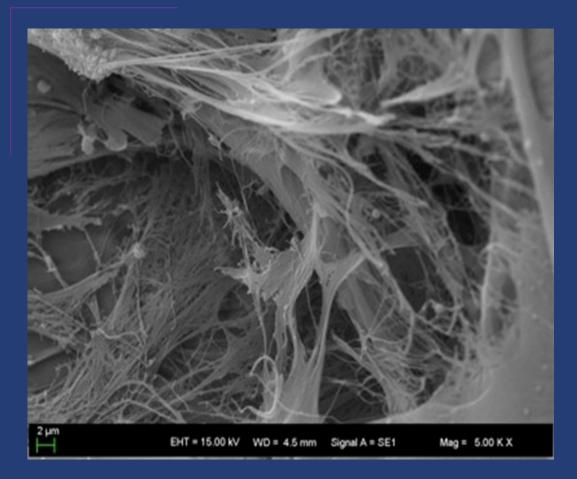
https://pubmed.ncbi.nlm.nih.gov/34712658/

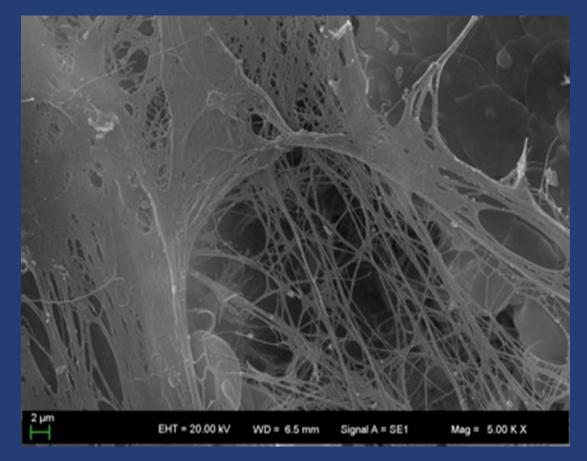
DPPSC MESODERM DIFFERENTIATION



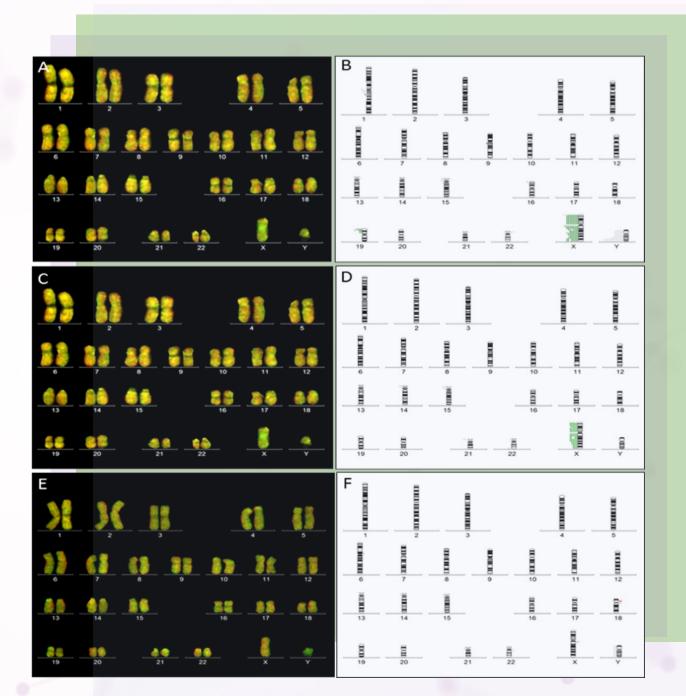

https://pubmed.ncbi.nlm.nih.gov/34712658/

DPPSC-BONE



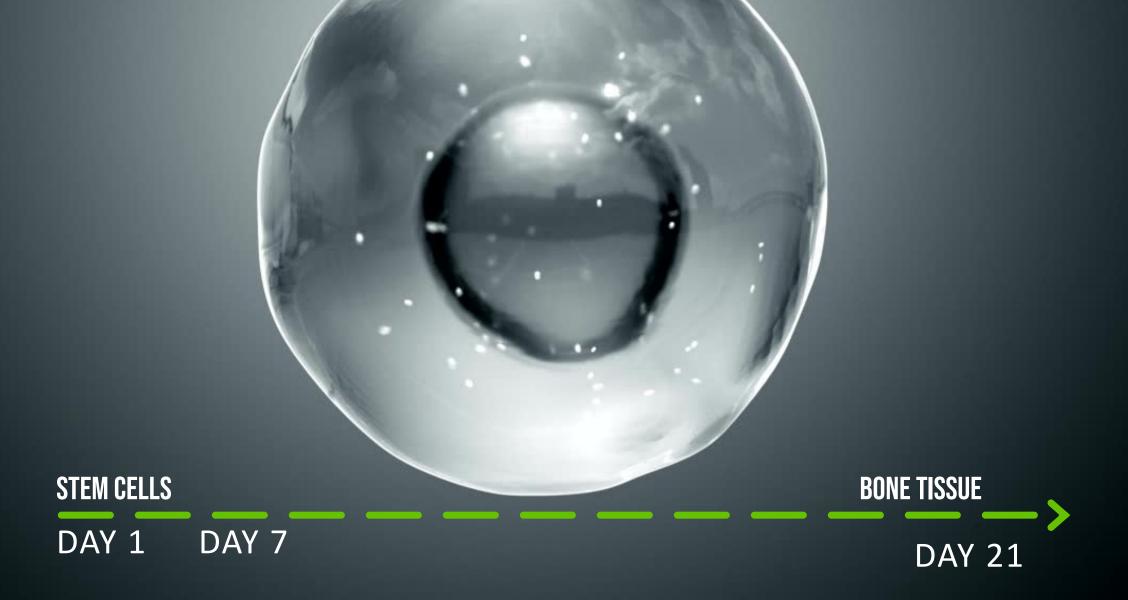


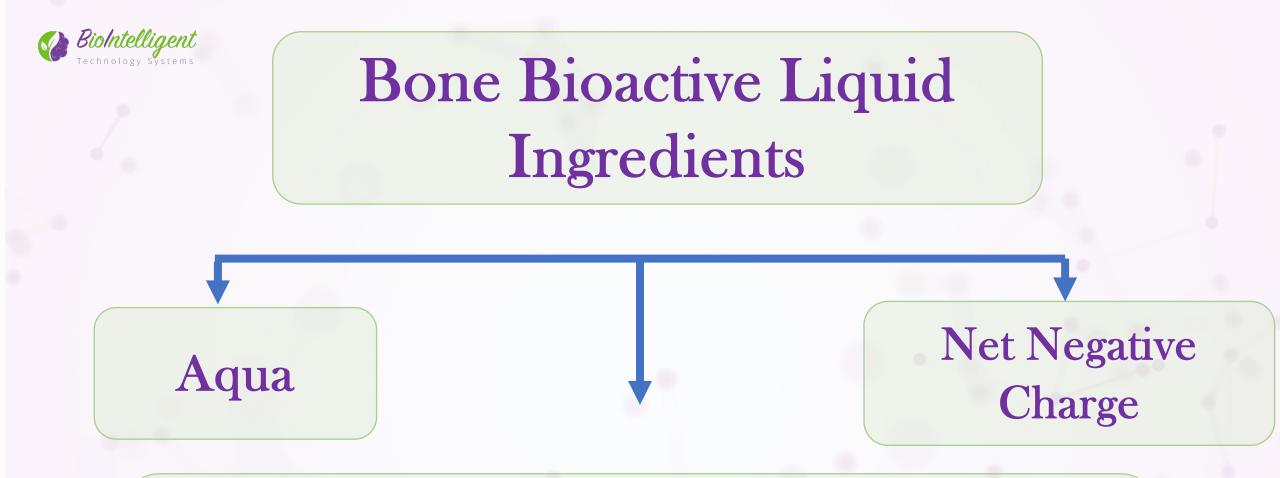
DPPSC-BONE



CHROMOSOMAL CHARACTERISATION

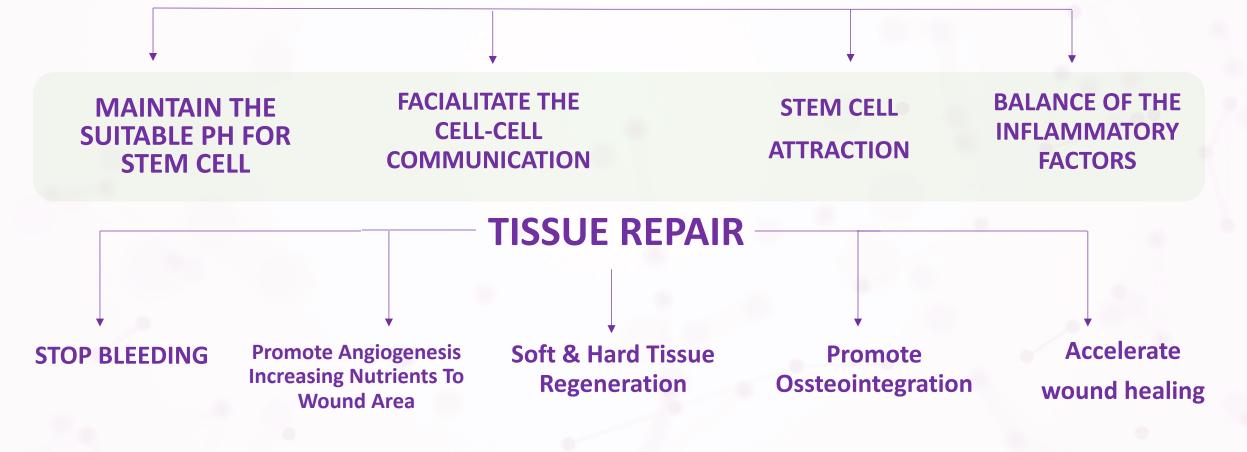
https://pubmed.ncbi.nlm.nih.gov/34712658/


PROTIENS CHARACTERISATION


FIBRONECTIN CD29, IL4, IL10, RANK

Protein name	Gene Names	LFQ Intensity	Protein name	Gene Names	LFQ Intensity	Protein name	Gene Names	LFQ Intens
Brain acid soluble protein 1	BASP1	27696000	Adenylate kinase 2, mitochondrial	ADK2	912970	40S ribosomal protein \$13	RPS13	4601
alactose-specific lectin 3	LGALS3	9423700	8 kDa dynein light chain	DLC1	907720	Coatomer subunit zeta-2	COPZ2	4544
ubulin beta-3 chain	TU883	6822700	Heterogeneous nuclear ribonucleoprotein AD	HNRNPAO	901440	DAZ-associated protein 1	DAZAP1	4524
Nyosin heavy chain, non-muscle lib	MYH10	5975000	17-beta-hydroxysteroid dehydrogenase 4	EDH1784	895890	Pyrroline-5-carboxylate reductase	PYCR1	4510
		5353500	Protein transport protein Sec24D	KIAA0755	893120	Apolipoprotein 8 mRNA editing enzyme, catalytic polypeptide-like 3C variant	APOBEC1L	449
Defender against cell death 1	DAD1		Asparagine-tRNA ligase	ASNS	882260	265 proteasome AAA-ATPase subunit RPT4	PSMC6	444
inhancer of rudimentary homolog	ERH	5054600						
feat shock protein HSP 90-alpha	HSP90AA1	4651500	ATP synthase subunit delta, mitochondrial	ATPSD	878020	Citrate synthase	CS	432
IOS ribosomal protein \$19	RPS19	4550700	DEAD box protein 6	DDX6	871660	5-AMP-activated protein kinase subunit gamma-1	PRKAG1	428
505 ribosomal protein L38	RPL38	4404400	605 ribosomal protein L14	RPL14	866170	Fumarate hydratase, mitochondrial	FH	426
Samma-2-globin	HBG2	4023900	405 ribosomal protein S8	OK/SW-cl.83	860510	c-Ki-ras	KRAS	422
Vivosin-Ic	MYO1C	3568600	Pyridoxal kinase	C21orf124	848420	Heme oxygenase 1	HMOX1	421
Systatin-B	CSTB	3418700	Proteasome subunit alpha type-3	PSMA3	846650	ES1 protein homolog, mitochondrial	C21orf33	418
	HBA1;HBA2	2780000	Importin-7	IPO7	837730	Septin-8	KIAA0202	414
femoglobin alpha 1			Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12	GNG12	831500	Glioblastoma-amplified sequence	GBAS	394
Delta-sarcoglycan	SGCD	2608000	Mitochondrial 2-oxoglutarate/malate carrier protein	SLC20A4	821290	Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial	HADH	393
IOS ribosomal protein S27-like	RPS27L	2473600		SNRPD3				
Coatomer subunit alpha	COPA	2241600	Small nuclear ribonucleoprotein Sm D3		816520	Dynactin complex subunit 22 kDa subunit	DCTN22	390
05 ribosomal protein L36	RPL36	2220900	605 ribosomal protein L22	RPL22	810330	Protein kinase C and casein kinase substrate in neurons protein 2	PACSIN2	386
eptin-2	KIAA0202	2167200	Malectin	MLEC	804740	2,3-cyclic-nucleotide 3-phosphodiesterase	CNP	378
utative uncharacterized protein ALDOC	ALDOC	2116900	ATP-specific succinyl-CoA synthetase subunit beta	SUCLA2	800330	C-terminal-binding protein 2	CTBP2	375
	HCVFTP2	2051200	Major prion protein	PRNP	784470	Methionine adenosyltransferase 2	MAT2A	371
Ip-regulated during skeletal muscle growth protein 5			MAP1 light chain LC2	MAPIA	781630	Interferon-induced transmembrane protein 3	IFITM3	371
oagulation factor XIII A chain	F13A	2049900	Integrin beta-5	ITG85	751840	Vasodilator-stimulated phosphoprotein	VASP	370
i05 ribosomal protein L18a	RPL18A	2016900						
polipoprotein H	APOH	1945300	SH3 domain-binding glutamic acid-rich-like protein	SH3BGRL	748820	IsoleucinetRNA ligase	IARS	34
-C chemokine receptor type 8	CCR8	1906900	605 ribosomal protein L6	RPL6	745740	Ornithine aminotransferase, hepatic form	OAT	334
Aembrane-associated progesterone receptor component 2	PGRMC2	1898100	p30 DBC	KIAA1967	736270	Leprecan-like protein 2	LEPREL2	33
listone H2A.Z	H2AFZ	1884200	Lissencephaly-1 protein	US1	731180	Glycine hydroxymethyltransferase	SHMT2	31
wonemal beta dynein heavy chain 7	DNAH7	1804300	Four and a half UM domains protein 3	FHL3	724840	Oncogene FUS	FUS	31
			Macropain subunit C7-I	PSM82	720440	Androgen-regulated short-chain dehydrogenase/reductase 1	ARSDR1	31
rotein transport protein Sec61 subunit beta	SEC61B	1756200	Microtubule-associated proteins 1A/18 light chain 3 beta 2	MAP1LC382	717490	Acetyl-CoA acetyltransferase, cytosolic;	ACAT2	31
i gamma-l	GNG2	1666700						
longation factor Tu, mitochondrial	TUFM	1642900	DEAD box polypeptide 17 isoform p82 variant	DDX17	713810	Vacuolar ATPase isoform VA68	ATP6A1	31
hosphoserine aminotransferase	PSA	1634500	Macropain epsilon chain	LMPX	709880	605 ribosomal protein L12	RPL12	30
0 kDa subunit of Ku antigen	XRCC6	1634000	Pre-mRNA-splicing factor SF3b 130 kDa subunit	KIAA0017	699460	ADP-ribosylation factor-like protein 1	ARL1	30
ukaryotic initiation factor 4A-II	EIF4A2	1489000	LeucinetRNA ligase	KIAA1352	695650	Endoplasmic reticulum-Golgi intermediate compartment protein 1	ERGIC1	30
05 ribosomal protein L30	RPL30	1471300	405 ribosomal protein 55	RPS5	691660	Vacuolar protein sorting-associated protein 26A	VPS26A	29
	APCS	1410300	Tetratricopeptide repeat protein 35	KIAA0103	687970	Chap1	HRIHF82157	27
.55 alpha-1-glycoprotein			DDRGK domain-containing protein 1	DDRGK1	687570	Protein 40-6-3	SUGT1	27
C9-2	TOM22	1394200						
ctin-related protein 2/3 complex subunit 5	ARC16	1360700	Cytochrome c	CYC	682870	p120GAP	RASA	26
idenylate kinase 1	AK1	1342200	Opa-interacting protein 1	OIP1	676250	Baboon M7 virus receptor	ASCT2	25
K506-binding protein 1A	FKBP1A	1331600	Cyclooxygenase-1	COX1	669280	Mitogen-activated protein kinase 1-interacting protein 1-like	MAPK1IP1L	22.
D49 antigen-like family member B	CD498	1289300	CD63 antigen	CD63	660080	Complex I-PDSW	NDUF810	21
ukaryotic initiation factor 4A-III	EIF4A3	1265400	PEP11 homolog	DC15	657420	ATP synthase subunit g, mitochondrial	ATPSL	21
			Malic enzyme 2	ME2	648290	Importin subunit beta-3	IPO5	20
D49 antigen-like family member F	ITGA6	1229600		ISG15	645570	Beta-actin-like protein 2	ACTBL2	19
hromosome 14 open reading frame 166	C14orf166	1173800	Ubiquitin cross-reactive protein					
OS acidic ribosomal protein P2	D1152243E	1167200	Prostaglandin reductase 1	PTGR1	627690	Collagen alpha-1(IV) chain	COL4A1	18
7-beta-hydroxysteroid dehydrogenase 10	ERAB	1162100	Neural precursor cell expressed developmentally down-regulated protein 6	NEDD6	619140	DJ639P13.2.2 (Acidic calponin 3)	CNN3	16
polipoprotein C3	APOC3	1143000	SH3 and PX domain-containing protein 3B	SH3PXD3B	599160	Calcineurin-like phosphoesterase domain-containing protein 1	CPPED1	16
TP synthase subunit O, mitochondrial	ATP50	1126800	Thioredoxin domain-containing protein 1	TMX	599030	Sorting nexin-5	SNX5	16
plicing factor U2AF 65 kDa subunit	U2AF2	1104400	Histidine-tRNA ligase	HARS	591600	3D3/LYRIC	AEG1	16
			33 kDa VAMP-associated protein	VAP33	589310	Membrane component chromosome 3 surface marker 1	TM45F1	16
05 ribosomal protein 525	RPS25	1090300	605 ribosomal protein L35	RPL35	571500	Fibrilin-1	FBN	15
H3 protein	VH3	1086000				Transmit &	VASN	
iadenosine tetraphosphate synthetase	GARS	1080500	Casein kinase 2 beta polypeptide	CSNK2B	568020	Vasorin		15
libosomal protein L15	RPL15	1077600	Oxoglutarate (Alpha-ketoglutarate) dehydrogenase	OGDH	563800	Small nuclear ribonucleoprotein F	SNRPF	14
05 ribosomal protein L7a	RPL7A	1036700	Protein FAM120A	FAM120A	559680	Nucleoside diphosphate kinase A	NME1	14
hibitor of nuclear factor kappa-B kinase-interacting protein	IKBIP	1034500	265 proteasome non-ATPase regulatory subunit 7	PSMD7	558850	Membrane-associated protein HEM-2	HEM2	13
on protease homolog, mitochondrial	LONP1	1003500	Eukaryotic translation initiation factor 2 subunit 3	EIF2G	556780	Biliverdin reductase A	BLVR	13
			26S proteasome AAA-ATPase subunit RPT5	PSMC3	553220	Oncogene c-mel	MEL	11
ILA-DR-associated protein II	SET	997090	Endoplasmic oxidoreductin-1-like protein	EROIL	549700	A-kinase anchor protein 12	AKAP12	10
ransmembrane protein 205	TMEM205	990230						
arrier-to-autointegration factor	BAF	985230	Neuron cytoplasmic protein 9.5	UCHL1	540420	17-beta-hydroxysteroid dehydrogenase 12	HSD17812	10
P-C repair-complementing complex 58 kDa protein	RAD238	983200	NEDD8 carrier protein	UBC12	531740	Integrin beta-3	ITGB3	8
rsenical pump-driving ATPase	ASNA1	982310	Docking protein alpha	SRPR	528950	MEK-binding partner 1	MAP2K1IP1	8
H domain-containing protein 3	EHD3	975500	Archain 1, isoform CRA_a	ARCN1	528220	Nodal modulator 2	NOMO2	7
			405 ribosomal protein \$23	RPS23	525930	Complex I-51kD	NDUFV1	7
05 ribosomal protein L11	RPL11	966430	Clathrin light chain 8	CLTB	520450	Alpha-2-antiplasmin	AAP	
linase-related protein	MLCK	955770						7
eucine-rich repeat-containing protein 15	LRRC15	954900	N-acetylgalactosaminidase, alpha-	NAGA	518890	Proteasome inhibitor PI31 subunit	PSMF1	6
		0103/0	Profilin II	PFN2	492890	Fas ligand-associated factor 1	F8P11	2
Catenin delta-1	CTNND1	928760	- Total I					
	CTNND1 PROS26	928760 923350	85	ITM1	469390	Complex I-19kD	NDUFA8	1

https://pubmed.ncbi.nlm.nih.gov/34712658/



Biosalts :Calcium chloride, Disodium phosphate, Magnesium chloride, Potassium chloride, Potassium phosphate, Sodium chloride

Bone Bioactive Liquid Mechanism Of Action

SIGNALING PATHWAYS ACTIVATION STIMULATE FIBRONECTIN ,CD29, IL4, IL10, RANK

BIOINTELLIGENT PRODUCTS

THERAVE

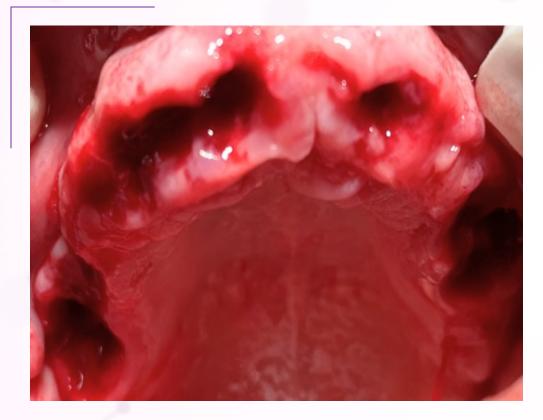
THERAVE

BONE BIOACTIVE LIQUID

THERAVEX TOTAL ORAL CARE PLUS

INDICATION FOR USE

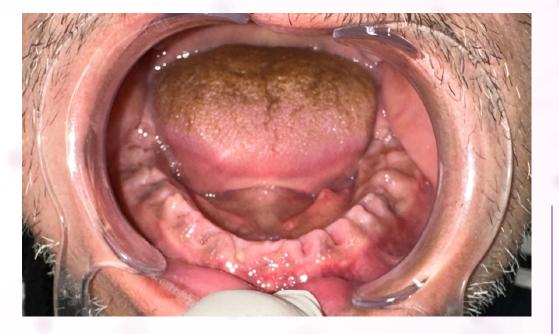
Ora PLUS

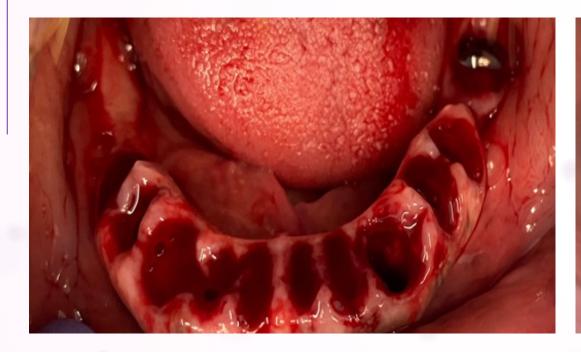

Immediately after surgery, 2-3 time a day for one week

Post-operative care following any oral surgery

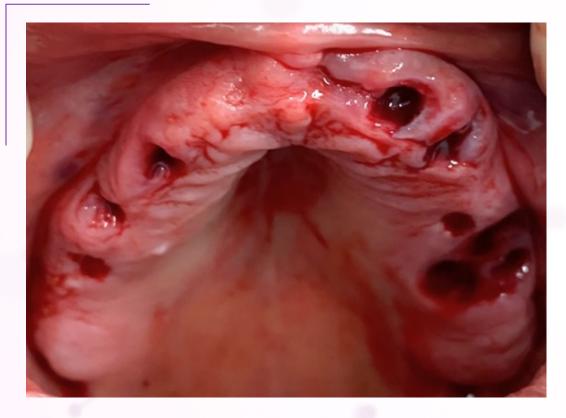
- Post tooth extractions
- . Dental implant replacement
- Managing pathologies of the oral mucosa (e.g., thrush, ulcers)
- Post dry socket treatment
- Post necrotic tissue treatment

O DAYS





O DAYS



O DAYS

7 DAYS

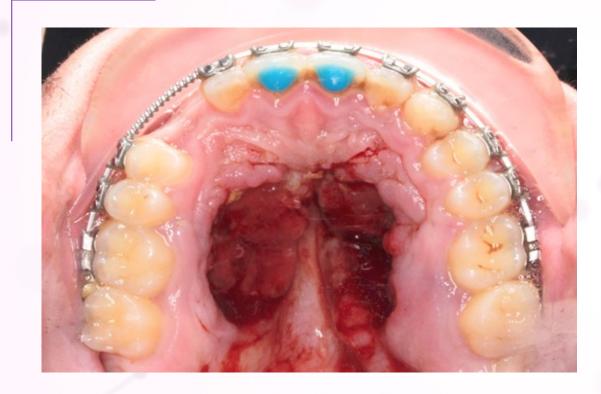
O DAYS

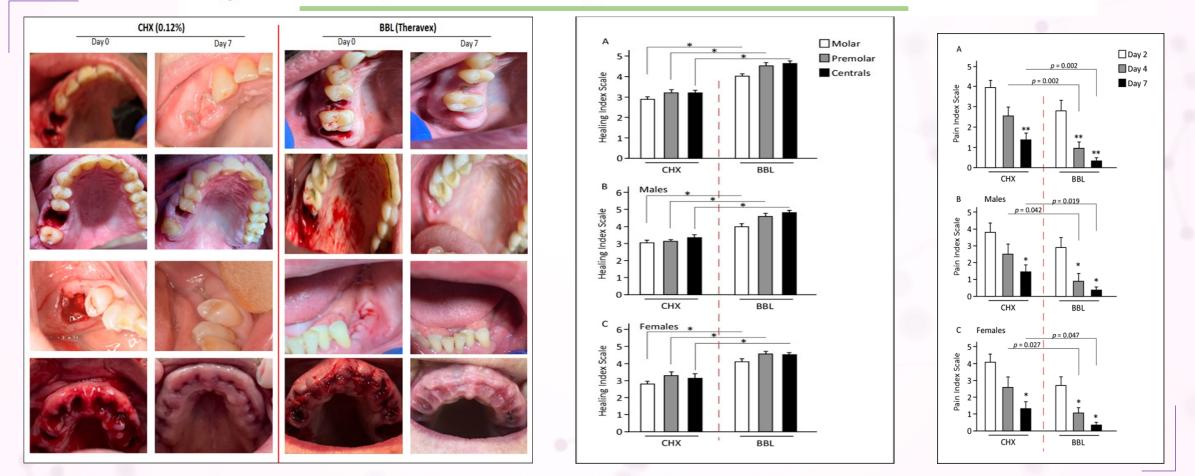
O DAYS

7 DAYS



O DAYS





Brief Report

Comparison of 0.12% Chlorhexidine and a New Bone Bioactive Liquid, BBL, in Mouthwash for Oral Wound Healing: A Randomized, Double Blind Clinical Human Trial

MDP

Eduard Ferrés-Amat^{1,2,†}, Ashraf Al Madhoun^{3,†}, Elvira Ferrés-Amat^{1,2}, Neus Carrió⁴, Miguel Barajas^{5,6}, Areej Said Al-Madhoun⁶, Eduard Ferrés-Padró^{1,6}, Carles Marti^{6,7} and Maher Atari^{6,8,9,*}

THERAV

2 X 20 M

BBL TECHNOLOGY

BONE BIOACTIVE LIQUID THERAVEX TISSUE CARE PLUS DENTISTRY

Dental Implantology

Dental implant placement

Periimplantitis

THERAVE

Periodontology

Periodontitis Mucogingival surgery

Root Canal Treatment

Reversible pulpitis Pediatric pulpitis

Oral Surgery Bone Regeneration

Bone graft maxillofacial surgery

TITANIUM BONE BIOACTIVE LIQUID

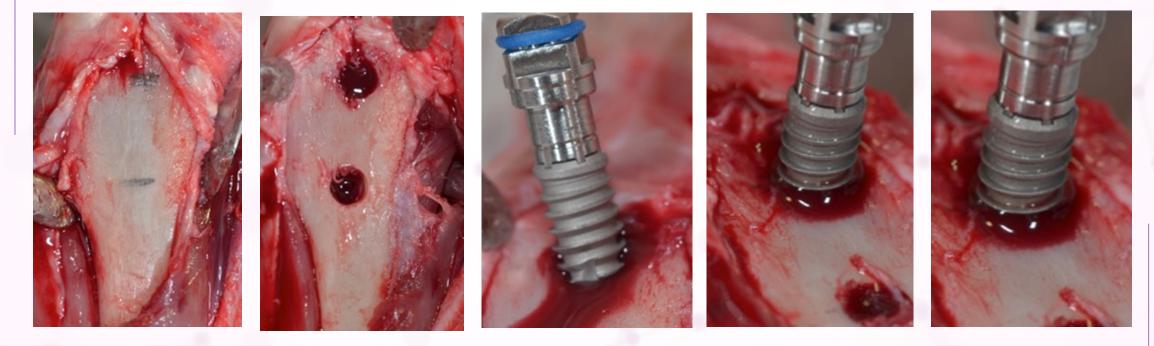
GROUP A


SURFACE TREATMENT

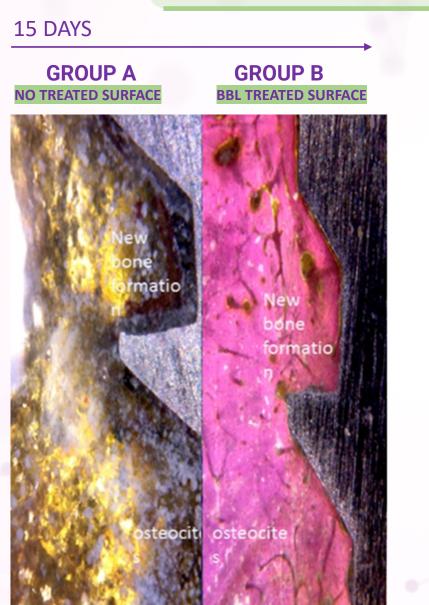
GROUP A No treatment

GROUP B Bone bioactive liquid

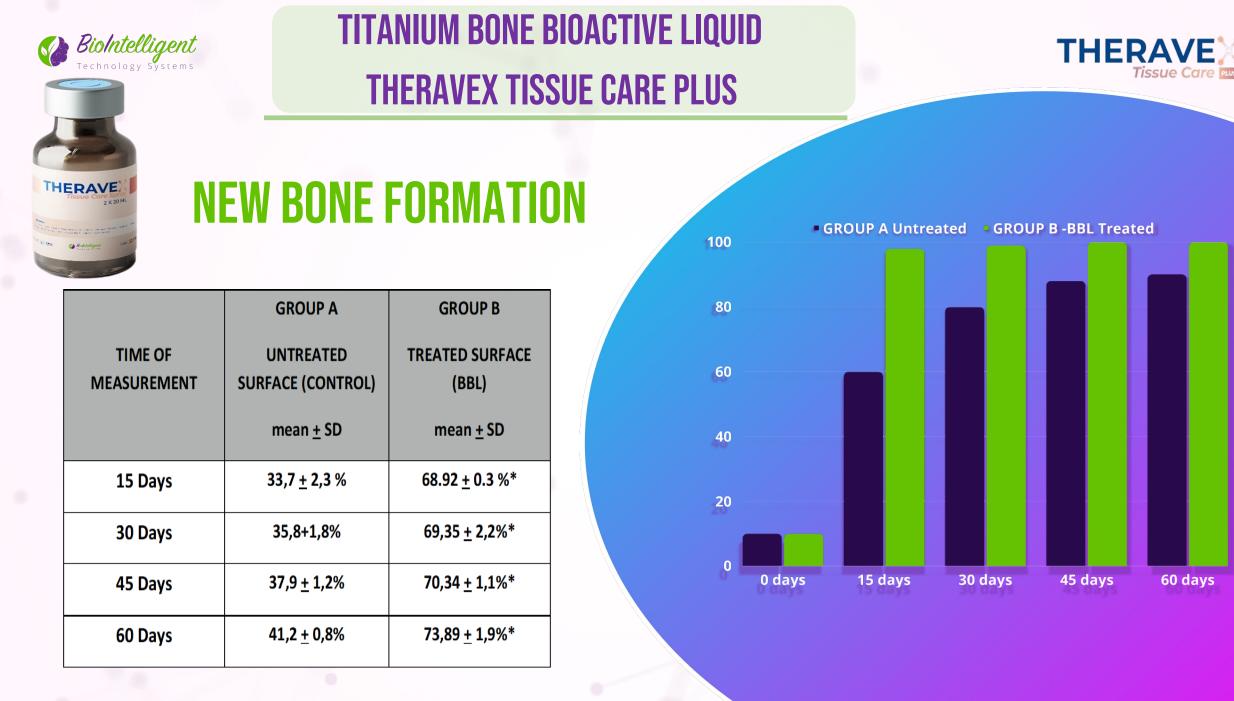
GROUP B



TITANIUM BONE BIOACTIVE LIQUID THERAVEX TISSUE CARE PLUS SURGICAL PROCEDURE







Tissue Care

60 days

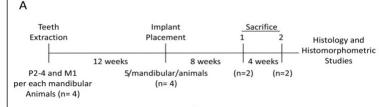
materials

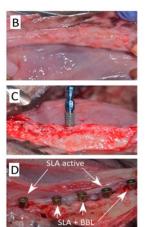
MDPI

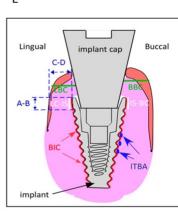
Article

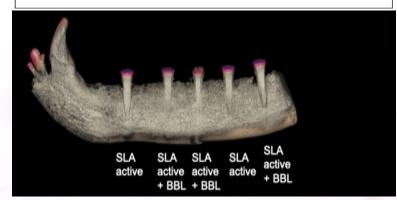
Histologic and Histomorphometric Evaluation of a New Bioactive Liquid BBL on Implant Surface: A Preclinical Study in Foxhound Dogs

Eduard Ferrés-Amat ^{1,7}, Ashraf Al Madhoun ^{2,4}⁽³⁾, Elvira Ferrés-Amat ^{1,3}⁽³⁾, Saddam Al Demour ⁴, Mera A. Ababneh ⁵, Eduard Ferrés-Padró ^{1,6}⁽³⁾, Carles Marti ^{6,7}, Neus Carrio ³, Miguel Barajas ^{6,8}⁽³⁾ and Maher Atari ^{6,7,4}⁽³⁾


- ¹ Oral and Maxillofacial Surgery Service, Hospital HM Nens, HM Hospitales, 08009 Barcelona, Spain; eduard.fa@institutiernesamat.com (E.F.A.); eb'irafa@institutiernesamat.com (E.F.A.); eduard.fa@institutiernesamat.com (E.F.P.)
- ² Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; ashraf.madhoun@dasmaninstitute.org
- ³ Oral and Maxillofacial Surgery Department, Universitat Internacional de Catalunya, St Josep Trueta s/n, Sant Cugat del Valles, 08195 Barcelona, Spaire, neuscarriober@gmail.com 4 Department of Special Surgery/Division of Urology, School of Medicine, The University of Jordan,
- Amman 11942, Jordan; saldemour@ju.edu.jo ⁵ Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology,
- Irbid 22110, Jordan; mababneh@just.edu.jo Biointelligent Technology Systems SL, Diputaccion 316, 3D, 08009 Barcelona, Spain;
- martipages.c@gmail.com (C.M.); miguel.barajas@unavarra.es (M.B.)
- ⁷ Oral and Maxillofacial Surgery Department, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
- 8 Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain 9 Ziacom Medical SL C. Buhar 2, 28230 Medical Spain
- ⁹ Ziacom Medical SI, C. Buhos, 2, 28320 Madrid, Spain
 Correspondence: matari@biointelligentsLcom
- Correspondence: matariuolointeiligentsLcom
 Eduard Ferrés-Amat and Ashraf Al Madhoun should be considered joint first author.
- T Eduard Ferres-Amat and Ashraf Al Madhoun should be considered joint hr


Abstract Background: Bioactive chemical surface modifications improve the wettability and osseointegration properties of titanium implants in both animals and humans. The objective of this animal study was to investigate and compare the bioreactivity characteristics of titanium implants (BLT) pre-treated with a novel bone bioactive liquid (BBL) and the commercially available BLT-SLA active. Methods: Forty BLT-SLA titanium implants were placed in in four foxhound dogs. Animals were divided into two groups (n = 20): test (BLT-SLA pre-treated with BBL) and control (BLT-SLA active) implants. The implants were inserted in the post extraction sockets. After 8 and 12 weeks, the animals were sacrificed, and mandibles were extracted, containing the implants and the surrounding soft and hard tissues. Bone-to-implant contact (BIC), inter-thread bone area percentage (ITBA), soft tissue, and crestal bone loss were evaluated by histology and histomorphometry. Results All animals were healthy with no implant loss or inflammation symptoms. All implants were clinically and histologically osseo-integrated. Relative to control groups, test implants demonstrated a significant 1.5- and 1.7-fold increase in BIC and ITBA values, respectively, at both assessment intervals. Crestal bone loss was also significantly reduced in the test group, as compared with controls, at week 8 in both the buccal crests (0.47 \pm 0.32 vs 0.98 \pm 0.51 mm, p < 0.05) and lingual crests (0.39* \pm 0.3 vs. 0.89 ± 0.41 mm, p < 0.05). At week 12, a pronounced crestal bone loss improvement was observed in the test group (buccal, 0.41 ± 0.29 mm and lingual, 0.54 ± 0.23 mm). Tissue thickness showed comparable values at both the buccal and lingual regions and was significantly improved in the studied groups (0.82-0.92 mm vs. 33-48 mm in the control group). Conclusions: Relative to the commercially available BLT-SLA active implants, BLT-SLA pre-treated with BBL showed improved histological and histomorphometric characteristics indicating a reduced titanium surface roughness and improved wettability, promoting healing and soft and hard tissue regeneration at the implant site.


P*// Keywords: BLT-SLA active; BBL; dental implant; osseo integration dental implantation by/


Materials 2021, 14, 6217. https://doi.org/10.3390/ma14206217

https://www.mdpi.com/journal/materials

check for updates

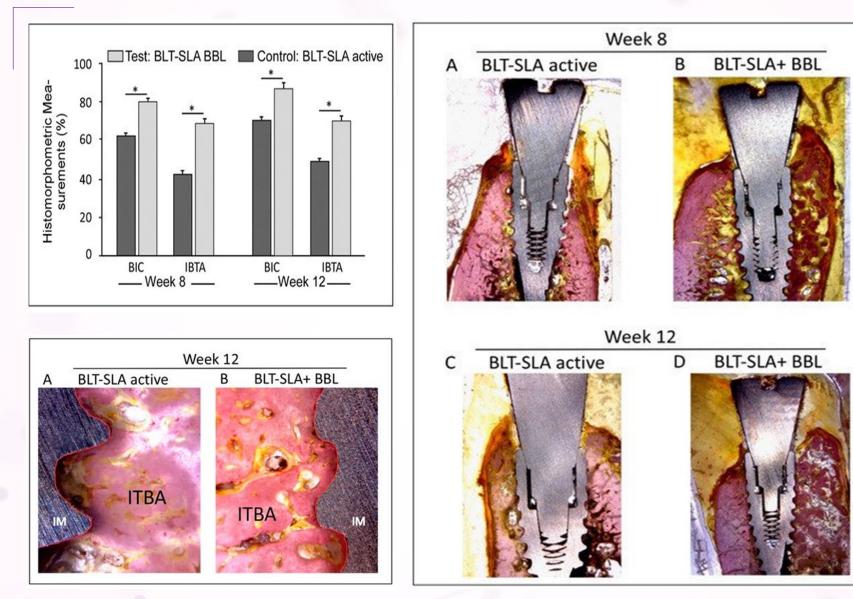
Citations: Ferrés-Amat, E.; Al Madhoun, A.; Ferrés-Amat, E.; Al Demous, S.; Asbaehe, M.A.; Ferrés-Padro, E.; Marti, C.; Carrio, N.; Barajas, M.; Atari, M. Histologic and Histomorphometric Evaluation of a New Bioactive Liquid BBL on Implant Surface: A Predinical Study in Fochound Dogs. Materials 2021, H, 6217. https://doi.org/10.3390/

ma14206217

A cademic Editors: Gianmario Schierano and Giuliana Muzio

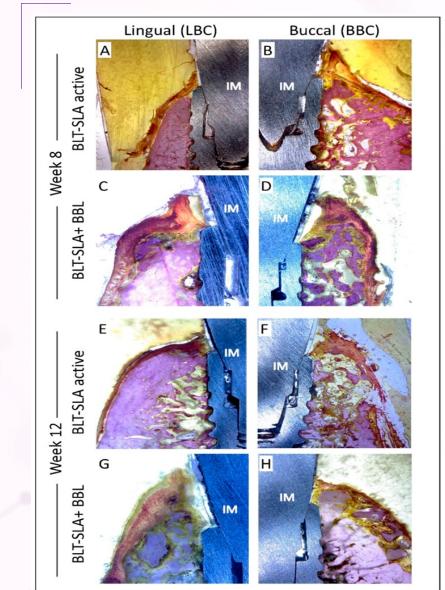
Received: 15 September 2021 Accepted: 16 October 2021 Published: 19 October 2021

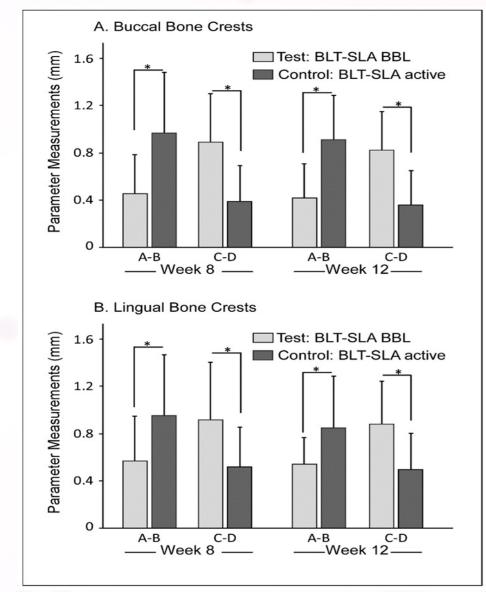
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



4.0/).

Copyright © 2021 by the authors. Liconsee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) liconse (https:// creativecommons.org./liconses/by/





STUDY TITLE: THE IMPACT OF TITAN SUREACTIVE IN VIVO

TEST PRODUCT: GALAXY IMPLANTS TITAN SURE ACTIVE

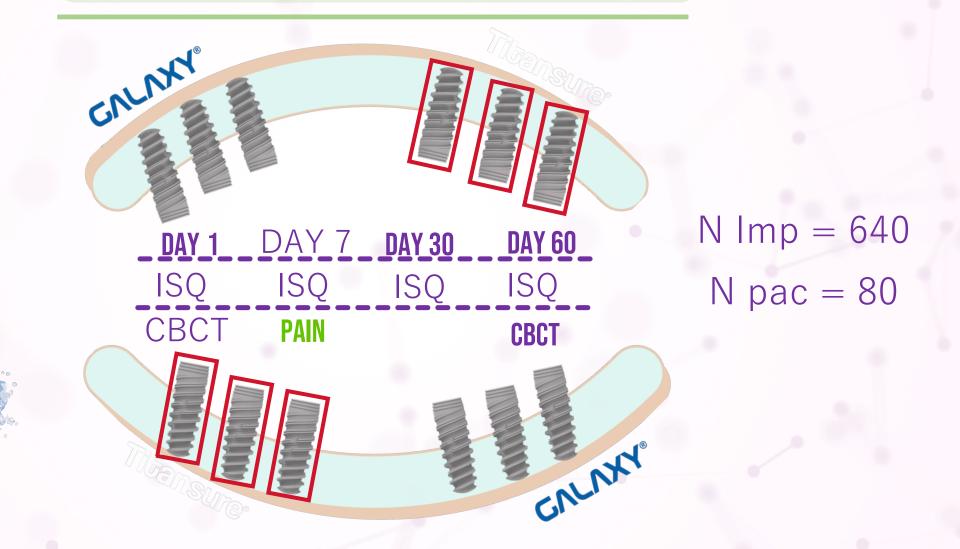
- INDICATION STUDIED: DENTAL EXTRACTION, DENTAL IMPLANT REPLACEMENT
- STUDY DESIGN: SPELT MOUTH.
- PROTOCOL IDENTIFICATION: 01/2021
- STUDY INITIATION DATE: 2/01/2022
- STUDY COMPLETION DATE: 10/04/2022

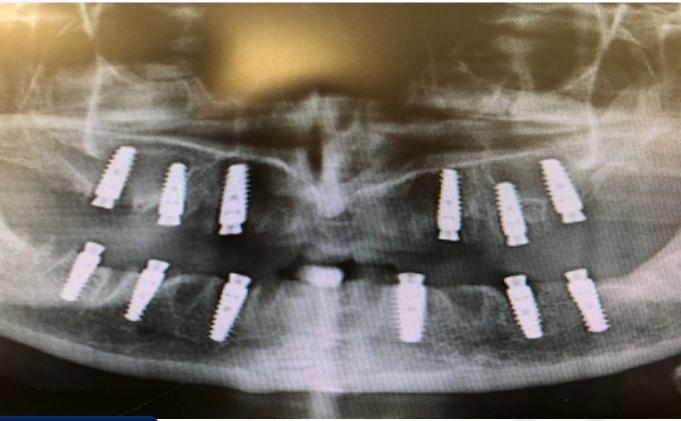
INVESTIGATORS: PRINCIPAL INVESTIGATOR: MAHER ATARI

• INVESTIGATORS INVOLVED: FERRÉSPADRÓ, EDUARD FERRÉSAMAT, ELVIRA FERRÉS AMAT, EDUARD CARLES MARTIN JAVIER MAREQUE

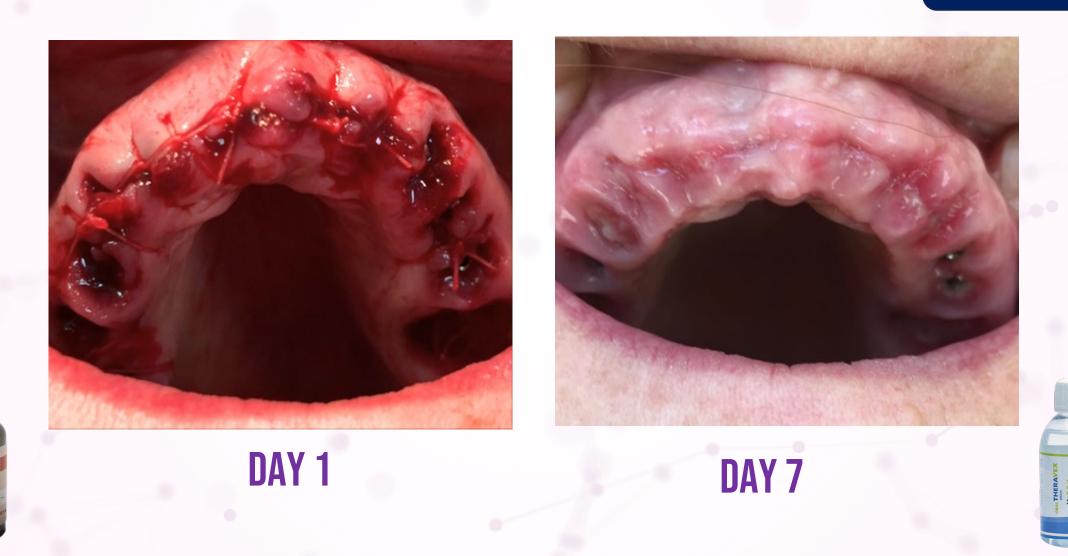
Article

Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration


Ashraf Al Madhoun ^{1,†}^(D), Khaled Meshal ^{2,†}, Neus Carrió ³, Eduard Ferrés-Amat ^{2,4}, Elvira Ferrés-Amat ⁵^(D), Miguel Barajas ^{2,6}^(D), Ana Leticia Jiménez-Escobar ⁷^(D), Areej Said Al-Madhoun ², Alaa Saber ², Yazan Abou Alsamen ², Carles Marti ^{2,8} and Maher Atari ^{2,*}^(D)



N Imp = 640 N pac = 80



THERAVE

THERAVE

TOTAL ORAL C

THERAVE

DAY 1

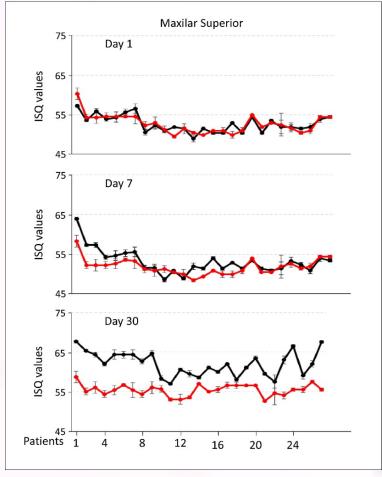


Figure 1: The mean implant stability quotient (ISQ) values at Maxilar Superior for each individual patient measured at days 1, 7, and 30 post-surgeries. The evaluation of implant stability was measured by resonance frequency analysis. Each dot represents a patient. Implants treated with BBL are in red, without BBL are in Black. The values are means ± standard error of the mean for 4 readings.

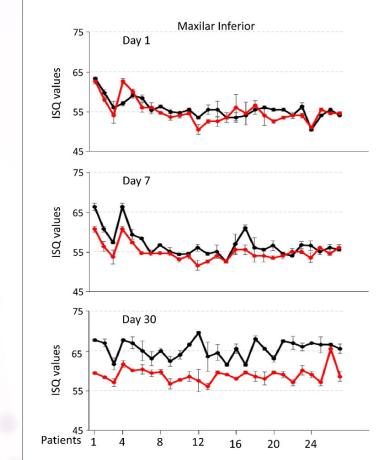
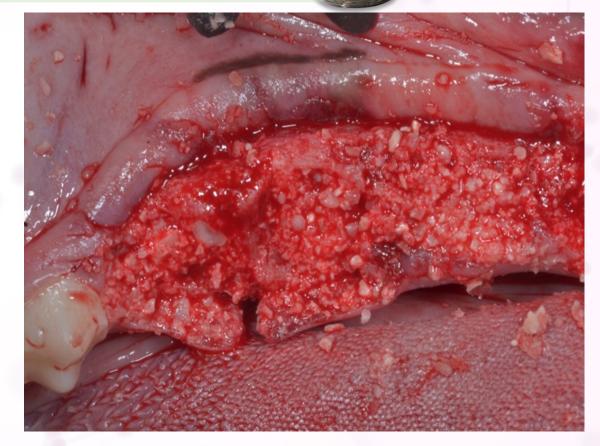


Figure 2: The mean implant stability quotient (ISQ) values at Maxilar Inferior of each individual patient measured at days 1, 7, and 30 post-surgeries. The evaluation of implant stability was measured by resonance frequency analysis.
Each dot represents a patient. Implants treated with BBL are in red, without BBL are in Black. The values are means ± standard error of the mean for 4

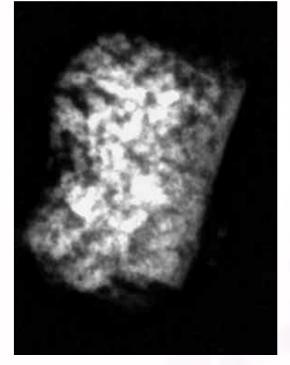
THERAVE 2 X 20 M Verner Barres

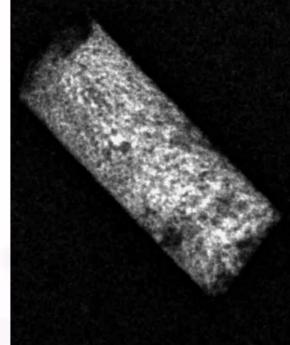
BONE BIOACTIVE LIQUID THERAVEX TISSUE CARE PLUS

BIOMATERIAL & HEALING


STRAUMANN-BBL STUDY MARCH 2017 Preliminary Pilot Study in Dogs B I o m a t e r i a l s

XENOGRAFT + BBL

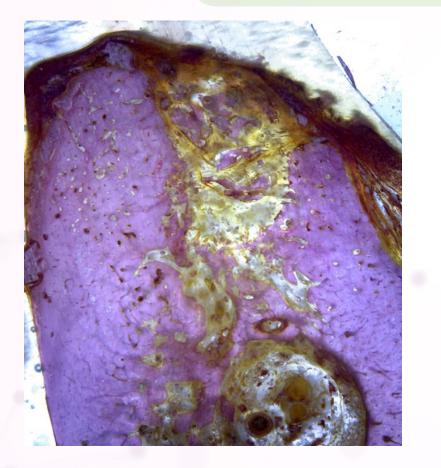

XENOGRAFT

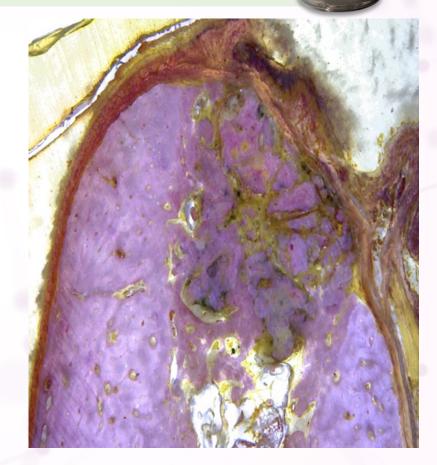


STRAUMANN-BBL STUDY MARCH 2017 Preliminary Pilot Study in Dogs B I o m a t e r i a l s

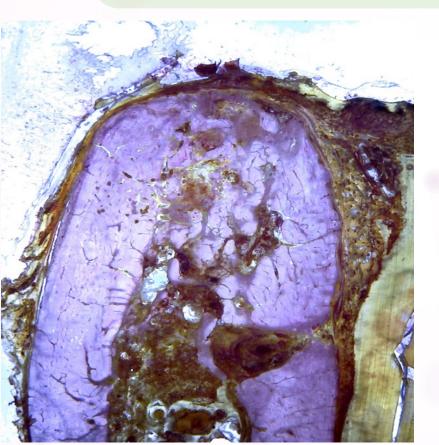
THERAVE

CONTROL

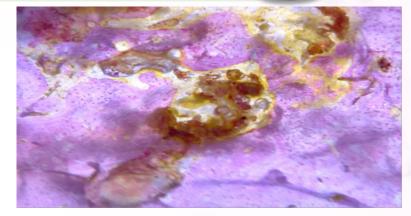

XENOGRAFT


XENOGRAFT + BBL BBL AFTER 1 MONTH

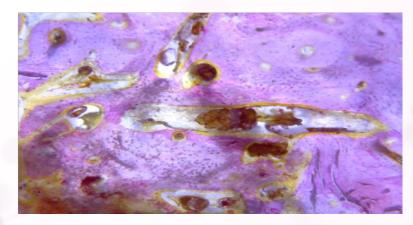
STRAUMANN-BBL STUDY MARCH 2017 Preliminary Pilot Study in Dogs BIOMATERIALS


XENOGRAFT BIOMATERIALS WITHOUT BBL 1 MONTH

XENOGRAFT BIOMATERIALS WITH BBL 1 MONTH

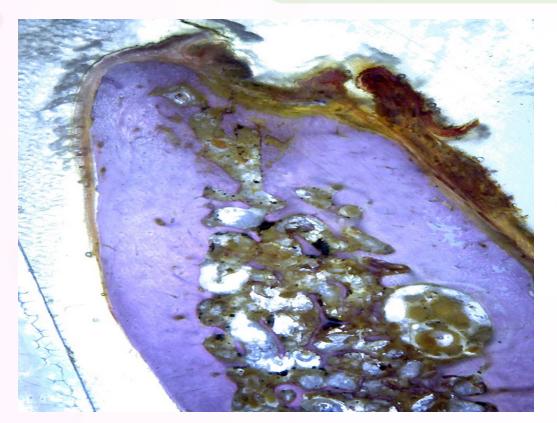


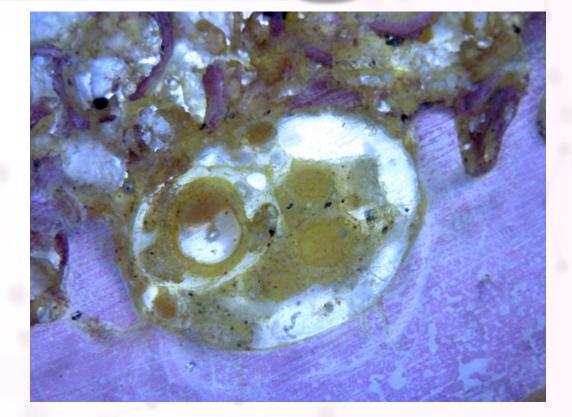
STRAUMANN-BBL STUDY MARCH 2017 Preliminary Pilot Study in Dogs BIOMATERIALS



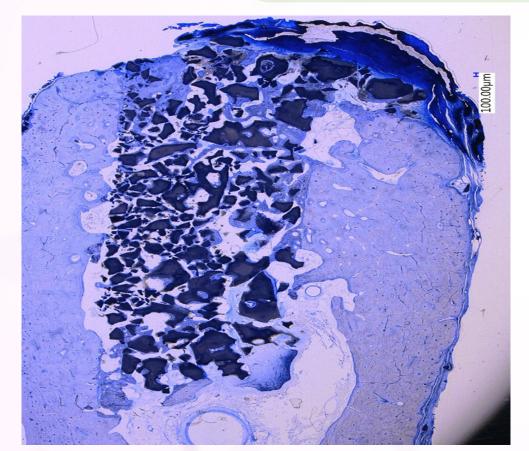
XENOGRAFT WITH BBL 2 MONTH

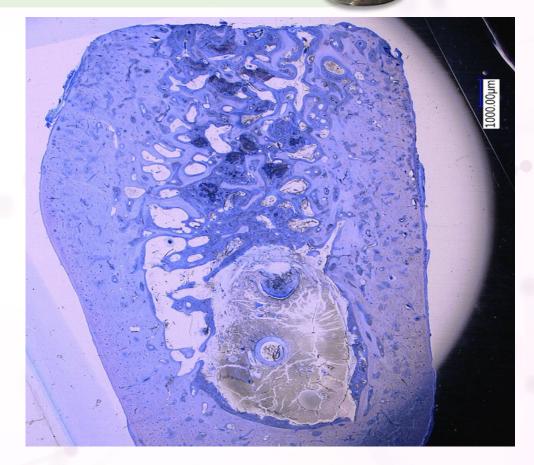
THERAVE


COMPLETE BONE FOMATION ON THE CORTICAL AREA


STRAUMANN-BBL STUDY MARCH 2017 Preliminary Pilot Study in Dogs B I o m a t e r i a l s

XENOGRAFT WITHOUT BBL 2 MONTH




HIGHLY BONE FOMATION INSIDE THE ALVEOLUS LIGHTLY CRESTAL BONE RESOPTION

STRAUMANN-BBL STUDY MARCH 2017 Preliminary Pilot Study in Dogs BIOMATERIALS

THERAVE

XENOGRAFT WITHOUT BBL 3 MONTH

XENOGRAFT WITH BBL 3 MONTH

PERIODONTAL SURGERY

PERIODONTAL SURGERY

1. Preparation and Debridement: Remove infected tissue using periodontal scaling curettes, ensuring thorough cleaning of the root surface.

2. Application of Theravex Tissue Care Plus:
Apply 2 ml of Theravex Tissue Care Plus directly to the root surface, ensuring comprehensive coverage.

• Allow Theravex Tissue Care Plus to remain in contact with the root surface for one minute to facilitate tissue regeneration and promote healing.

3. Treatment of Gingival Graft: Submerge the prepared gingival graft in 2 ml of Theravex Tissue Care Plus for 2 minutes to enhance graft viability and promote optimal integration.

4. Surgical Closure:

Close the surgical site with primary closure using sutures, ensuring proper alignment and stabilization of the graft and surrounding tissues.

5. Post-operative Care:

Complete the treatment regimen by prescribing Theravex Total Oral Care to enhance tissue regeneration and support post-operative healing.

ROOT CANAL TREATMENT

ENDODONTICS ROOT CANAL TREATMENTS

IRRIGATION WITH 1ML OF BBL 100% ONCE

A WEEK

CLASSIFICATION OF ROOT LATERAL CANALS



ENDODONTICS ROOT CANAL TREATMENTS

IRRIGATION WITH 1ML OF BBL 100% ONCE A WEEK

REDUCTION OF CYST SIZE AND CALCIFICATION OF THE ROOT

THERAVE

WEEK 3

DAY 1 WEEK 1



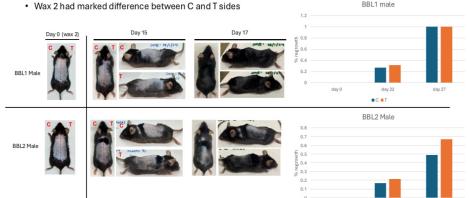
HAIR TRANSPLANT

BBL-2 MRR

HAIR TRANSPLANT

Females

• Wax 1 observations: hair grew back uniformly, did not notice any major differences in the C and T sides

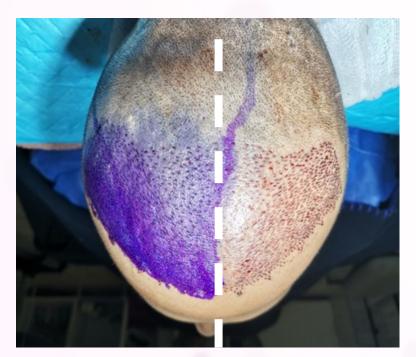

· Wax 2 had marked difference between C and T sides

Males

· Wax 1 observations: hair grew back uniformly, did not notice any major differences in the C and T sides

BBL1 male

Tissue Care |


THERAVE

TRANSPLANTATION OF FOLLICLES FROM THE OCCIPITAL TO THE FRONTAL AREA WAS PERFORMED BY WETTING THE HAIR FOLLICLES WITH The BBL. In the right frontal area of the patient with the BBL and the left area with the usual technique.

DAY 1

DAY O

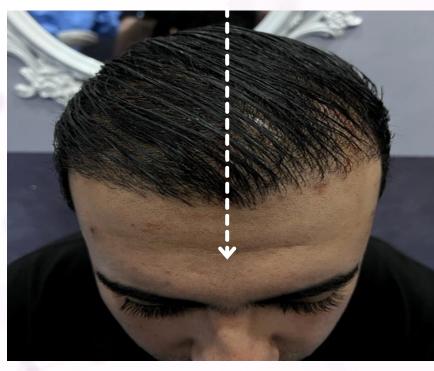
Theravex tissue

Theravex tissue care plus

1 YEAR

THERAVE

Theravex tissue care plus



TRANSPLANTATION OF FOLLICLES FROM THE OCCIPITAL TO THE FRONTAL AREA WAS PERFORMED BY WETTING THE HAIR FOLLICLES WITH The BBL. In the right frontal area of the patient with the BBL and the left area with the usual technique.

ONE YEAR

Theravex tissue care plus

Theravex tissue care plus

THERAVE Tissue Care

THERAVE

TRANSPLANTATION OF FOLLICLES FROM THE OCCIPITAL TO THE FRONTAL AREA WAS PERFORMED BY WETTING THE HAIR FOLLICLES WITH The BBL. In the right frontal area of the patient with the BBL and the left area with the usual technique.

ONE YEAR

TRANSPLANTATION OF FOLLICLES FROM THE OCCIPITAL TO THE FRONTAL AREA WAS PERFORMED BY WETTING THE HAIR FOLLICLES WITH The BBL. In the right frontal area of the patient with the BBL and the left area with the usual technique.

Theravex tissue care plus

Theravex tissue care plus

THERAVE

ONE YEAR

TRANSPLANTATION OF FOLLICLES FROM THE OCCIPITAL TO THE FRONTAL AREA WAS PERFORMED BY WETTING THE HAIR FOLLICLES WITH The BBL. In the right frontal area of the patient with the BBL and the left area with the usual technique.

DAY O

Theravex tissue care plus

1 YEAR

THERAVE Tissue Care

THERAVE

Theravex tissue care plus

TRANSPLANTATION OF FOLLICLES FROM THE OCCIPITAL TO THE FRONTAL AREA WAS PERFORMED BY WETTING THE HAIR FOLLICLES WITH The BBL. In the right frontal area of the patient with the BBL and the left area with the usual technique.

THERAVE

Theravex tissue care plus

FACIAL APPLICATION

FACIAL APPLICATION

DAY 1

3 WEEKS

BONE BIOACTIVE LIQUID THERAVEX CARE SPRAY

WOUND HEALING Skin Regeneration

SKIN BURN GRADE II

THERAVE

DAY O

DAY 7

SKIN BURN GRADE III Diabetic foot

DAY O


DAY 15

DAY 20

THERAVE

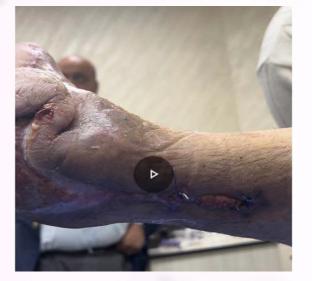
DAY O

DAY O

DAY 7



DAY O


DAY 7

DAY O

BIOINTELLIGENT'S COLLABORATION WITH UNIVERSITIES

upna

Universidad Pública de Navarra Nafarroako Unibertsitate Publikoa

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Prof. Dr. Maher Atari MD, DDS, PhD

